Extensions 1→N→G→Q→1 with N=C2 and Q=C22×D21

Direct product G=N×Q with N=C2 and Q=C22×D21
dρLabelID
C23×D21168C2^3xD21336,227


Non-split extensions G=N.Q with N=C2 and Q=C22×D21
extensionφ:Q→Aut NdρLabelID
C2.1(C22×D21) = C2×C4×D21central extension (φ=1)168C2.1(C2^2xD21)336,195
C2.2(C22×D21) = C22×Dic21central extension (φ=1)336C2.2(C2^2xD21)336,202
C2.3(C22×D21) = C2×Dic42central stem extension (φ=1)336C2.3(C2^2xD21)336,194
C2.4(C22×D21) = C2×D84central stem extension (φ=1)168C2.4(C2^2xD21)336,196
C2.5(C22×D21) = D8411C2central stem extension (φ=1)1682C2.5(C2^2xD21)336,197
C2.6(C22×D21) = D4×D21central stem extension (φ=1)844+C2.6(C2^2xD21)336,198
C2.7(C22×D21) = D42D21central stem extension (φ=1)1684-C2.7(C2^2xD21)336,199
C2.8(C22×D21) = Q8×D21central stem extension (φ=1)1684-C2.8(C2^2xD21)336,200
C2.9(C22×D21) = Q83D21central stem extension (φ=1)1684+C2.9(C2^2xD21)336,201
C2.10(C22×D21) = C2×C217D4central stem extension (φ=1)168C2.10(C2^2xD21)336,203

׿
×
𝔽